12月1日(火)、2日(水)電子デバイス研修講座(基礎編)(中級編):WEB併用

	12月1日(火)、2日(水)電チテバイス研修講座(基礎編)(中語 第3回電子デバイス研修講座(基礎編):WEB併用	解1回電子デバイス研修講座(中級編):WEB併用
キャッチ	第3回電ナノハイ 入町 5 両 1	第1回電子 7 ハイ ヘ 切 形 調 戸 (中 放 種) ・ W E D I オ オ ト
イャッテ フレーズ	~ これだけ知っていれば、あなたも電子デバイス関係者だ! ~	~中級編でもう一歩先に進もう!~
	本年の新入社員の方、電子デバイス産業及び関連産業に関わりたい、また関わって間もない方を	・理系の入社後3~5年の方について、電子デバイス全般の常識的素養を得ることを目指す。
	本牛の利八社員の方、電子ブハイス産業及び関連産業に関わりたい、また関わって同もない方を 対象として、電子デバイス関係者とのコミュニケーションを取れることを目指す。	・営業職、販売職の方について、顧客との実戦の場で、電子デバイスに関するやり取りが十分行
	The state of the s	えることを目指す。
会場	日本教育会館 喜山倶楽部 飛鳥の間	日本教育会館 喜山倶楽部 光琳の間
云物 WEB参加	电子水口 鱼鱼 医大小虫 化氯化银	电子系自鱼组 医角灰水浆 化作义图
WEB参加 の場合	Teamsを使用でURLを送付し、接続していただきます。	Teamsを使用でURLを送付し、接続していただきます。
	10:10-10:50 電子デバイスの歴史と応用分野	10:10-10:55 電子デバイス産業の市場動向からみた経営戦略
	釜原紘一 NEDIA監事、人材育成研修委員会副委員長、元三菱電機㈱	REDIA代表理事・会長 齋藤昇三
	<u>電子部品</u> (抵抗・コンデンサー等の受動部品)、 <u>半導体</u> (ダイオード・トランジスタ等の個別半導体、	
	LED等の光半導体、マイコン・メモリ等のLSI)、 <u>ディスプレイ</u> (LCD、EL、CRT)などからなる電子デ	超スマート社会の実現のためにできたるトランスフォーメーション(DX) の加速が必要となり、 それを支える電子デバイス産業の市場は大きく変化し、拡大している。この市場動向からみた日
12月1日 (火)	バイスの発展の歴史を振り返り、それらが様々な電子機器に使われるようになってきた歴史と現状を概観 +	本の電子デバイス産業が勝つための経営戦略について解説する。
	する。	
	11:00-11:50 半導体とは 西久保靖彦 ウエストプレイン 代表	11:05-11:50 これからの電子デバイス、技術と応用 松本哲郎 NEDIA人材育成研修委員会副委員長、Z2A企画 代表
	四次体項を ソエストノレイン TV表 半導体の材料・特性・デバイス ①半導体の特質、②P型、N型半導体とMOSトランジスタ、	本本台即 NEDIAへ何月成切形を受員云副委員長、22A正画 1V表 これからのデジタル社会の基盤となるICT技術、それを支える電子デバイスの役割・価値と注目
	③MOSトランジスタからLSIへ	デバイスを解説する。
	11:50-12:40 昼食・昼休み	11:50-12:40 昼食・昼休み
	12:40-13:40 受動素子の種類及び特徴	12:40-13:25 システムの中心を形作るマイコンとロジック
	安宅竜二 アルブスアルパイン㈱ 回路技術部 第2グループ グループマネージャー	西村光太郎 NEDIA理事、人材育成研修委員長、㈱プリバテック 相談役
	受動電子部品機能と最新動向並び電気設計における基本留意事項の解説	開発競争が激化しているAIチップを含め、マイコンとロジックの要点を解説する。
	13:50-14:50 半導体デバイス概要	13:30-14:15 次世代メモリとその応用
	西村光太郎 NEDIA理事、人材育成研修委員長、㈱プリバテック 相談役	松本哲郎 NEDIA人材育成研修委員会副委員長、Z2A企画 代表
		変革するメモリの新しい時代について解説する。
		14:20-15:05 モビリティ・インフラを支えるパワーデバイス
	メモリ・マイコン、ロジック、センサー等の主要半導体デバイスについて解説する。	寺島知秀 三菱電機㈱ パワーデバイス事業所 専任
		パワーデバイスの基本動作を簡単に紹介した後、モビリティ・インフラを支える現在の主力デバイス (IGRT SLMOSFFT)と、会後ナきた発展が予視されるSICデバイスについて順を追って経過する
	15:00-15:40 電子デバイスの品質管理概要	(IGBT、SJ-MOSFET) と、今後大きな発展が予想されるSICデバイスについて順を追って解説する。 15:15-15:55 IoT・ロボット時代に必須のセンサーの実態
	15:00-15:40 電子アバイスの面具管壁機会 釜原紘一 NEDIA監事、人材育成研修委員会副委員長、元三菱電機㈱	15:15-15:55 101・ロホット時代に必須のセンリーの美態
		IoT・ロボットなどに利用されて各種センサと周辺回路部品とセンサシステム設計の例について
	電子デバイスの品質の概要について、信頼性、故障メカニズム等について解説する。	解説する。
	15:50-16:50 電子デバイスの新しい技術及び応用	16:05-16:50 車載製品に使われる受動素子
	松本哲郎 NEDIA人材育成研修委員会副委員長、Z2A企画 代表	富樫一之 アルプスアルパイン㈱ 回路技術部 主幹技師
	これからの世の中の新しい潮流により変化する電子デバイスについて解説する。	種々の受動素子が多数使われる代表的な分野である車載製品での受動素子の使用状況を詳しく解 説する。
12月2日	10:00-12:00 半導体製造工程	10:00-11:00 今後の最先端半導体デバイスを導く最先端製造プロセス技術
	西久保靖彦 ウエストプレイン 代表	東京エレクトロン㈱ デバイス技術企画部 メモリテクノロジープロジェクト 廣田良浩 プロジェクトリーダー
	V/ W/ (DRAM、NAND Flash、Logicに代表される最先端半導体デバイスの構造とその製造プロセス技
		術の全体像(プロセスフロー)を解説する。これら最先端デバイスのビット密度向上、微細化の
		ためのプロセス技術的チャレンジや推測される今後の技術動向を紹介する。さらに、それらを実
	半導体製造工程・製造装置・材料 ①半導体前工程(ウエーハプロセス)、 ②半導体後工程(実装・組立工程)、③半導体の微細化はどこまで?	現するために必要な代表的な最先端製造プロセス技術について紹介する。
	シナ寺仲次上往 天衣・袖立上往/、 ②十寺仲の城神化はとこまじ!	11:10-11:55 デバイスを活かす組込みソフトウェアの実際
		神原弘之 公益財団法人 京都高度技術研究所 研究開発本部 ICT研究開発部 部長
		巨大化への対応、セキュリティの確保などの組込みソフトウェアの課題について解説する。
	12:00-12:50 昼食・昼休み	11:55-12:45 昼食・昼休み
(水)	12:50-13:55 電子デバイスの実装概要	12:45-13:25 電子デバイスの品質管理の実態
	加藤凡典 (有)AiT 代表取締役	周藤仁吉 NEDIA常務理事・事務局長、元㈱日立製作所 電子デバイスの信頼性向上へのアプローチ、故障への対応等の電子デバイス品質管理の実態につ
	半導体パッケージング、モジュール、プリント基板、実装機 について解説する。	いて解説する。
	14:05-14:45 センサー・無線モジュール概要	13:35-14:30 半導体を作る材料の進歩
	漆原育子 アーズ㈱ 取締役	西久保靖彦 ウエストブレイン 代表
	IoTシステムに欠かせないセンサー・無線モジュール・組込ボード・AIチップなどの現状とそれを使っ	光・高速通信・パワー半導体向け材料について解説する。
	たシステム構築、利用シーンについて解説する。	
	14:55-15:35 組込みソフトウェア概要 抽筒3.2 小犬肚団注入 吉邦亨度技術研究所 研究関係大戦 ICT研究関係知 報息	14:40-15:35 最新の実装技術
	神原弘之 公益財団法人 京都高度技術研究所 研究開発本部 ICT研究開発部 部長	加藤凡典 (有)AiT 代表取締役 実装技術の進化と重要性の変化、5G向けスマホの実装技術及び最新の重要技術について解説す
	組込みソフトウェアが、電子デバイスを、どのように連携/機能させているかを解説する。	大教文門の座店と主要はの変化、JUINI ハマネの大教文門及び取制の主要文門にプルで序記する。
	15:45-16:40 新しい時代を支える電子デバイスの全貌	15:45-16:40 2020年の世界半導体市場の動向と注目すべきトレンド
	NEDIA代表理事・会長 齋藤昇三 ペンフェン・デュート 開発 トン・ケー (小声 Prot/い 人 原 並 九 原 ・ 他 東 世 開発	南川 明 Informa Tech(OMDIA) Senior Consuting Director
	例テバイス&システムファット開発センター 代表収締役会長 兼 社長、隣東芝 嘱託	-
	超スマート社会といわれる新しい時代が到来、これを支える電子デバイス産業の市場動向を解説	COVID19、米中摩擦下における市場を展望する。
	し、日本が勝つための戦略を議論する。	